A Cyanobacterial Circadian Clockwork
نویسندگان
چکیده
Cyanobacteria have become a major model system for analyzing circadian rhythms. The temporal program in this organism enhances fitness in rhythmic environments and is truly global--essentially all genes are regulated by the circadian system. The topology of the chromosome also oscillates and possibly regulates the rhythm of gene expression. The underlying circadian mechanism appears to consist of both a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) and ATP. These three core oscillator proteins have been crystallized and structurally determined, the only full-length circadian proteins to be so characterized. The timing of cell division is gated by a circadian checkpoint, but the circadian pacemaker is not influenced by the status of the cell division cycle. This imperturbability may be due to the presence of the PTO that persists under conditions in which metabolism is repressed. Recent biochemical, biophysical, and structural discoveries have brought the cyanobacterial circadian system to the brink of explaining heretofore unexplainable biochemical characteristics of a circadian oscillator: the long time constant, precision, and temperature compensation.
منابع مشابه
Circadian rhythms of superhelical status of DNA in cyanobacteria.
The cyanobacterium Synechococcus elongatus expresses robust circadian (daily) rhythms under the control of the KaiABC-based core clockwork. Unlike eukaryotic circadian systems characterized thus far, the cyanobacterial clockwork modulates gene expression patterns globally and specific clock gene promoters are not necessary in mediating the circadian feedback loop. The oscilloid model postulates...
متن کاملA minimal circadian clock model.
The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Thereby, an internal circadian oscillator drives gene expression in an approximate 24 hours rhythm. Circadian clocks are found in most eukaryotes. In prokaryotes only cyanobacteria are known to regulate their activities in a circadian rhythm. In vitro experiments sho...
متن کاملKaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.
Cyanobacterial clock proteins KaiA and KaiC are proposed as positive and negative regulators in the autoregulatory circadian kaiBC expression, respectively. Here, we show that activation of kaiBC expression by kaiA requires KaiC, suggesting a positive feedback control in the cyanobacterial clockwork. We found that robust circadian phosphorylation of KaiC. KaiA was essential for in vivo KaiC pho...
متن کاملPrecise circadian clocks in prokaryotic cyanobacteria.
Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a timing mechanism that is independent of the cell division cycle. This biological clock orchestrates global regulation of gene expression and controls the timing of cell division. Proteins that may be involved in input pathways have been identified. Mutational screening has identified three clock genes that...
متن کاملSensing touch without touching
Molecular clockwork from cyanobacteria The cyanobacterial circadian clock oscillator can be reconstituted in a test tube from just three proteins—KaiA, KaiB, and KaiC—and adenosine triphosphate (ATP). Tseng et al. studied crystal and nuclear magnetic resonance structures of complexes of the oscillator proteins and their signaling output proteins and tested the in vivo effects of structure-based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 18 شماره
صفحات -
تاریخ انتشار 2008